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ABSTRACT: A remarkable property of certain covalent glasses
and their melts is intermediate range order, manifested as the first
sharp diffraction peak (FSDP) in neutron-scattering experiments,
as was exhaustively investigated by Price, Saboungi, and
collaborators. Atomistic simulations thus far have relied on either
quantum molecular dynamics (QMD), with systems too small to
resolve FSDP, or classical molecular dynamics, without quantum-
mechanical accuracy. We investigate prototypical FSDP in GeSe2
glass and melt using neural-network quantum molecular dynamics
(NNQMD) based on machine learning, which allows large
simulation sizes with validated quantum mechanical accuracy to
make quantitative comparisons with neutron data. The system-size
dependence of the FSDP height is determined by comparing QMD and NNQMD simulations with experimental data. Partial pair
distribution functions, bond-angle distributions, partial and neutron structure factors, and ring-size distributions are presented.
Calculated FSDP heights agree quantitatively with neutron scattering data for GeSe2 glass at 10 K and melt at 1100 K.

Covalent glasses such as SiO2, GeSe2, SiSe2, As2S3,
ZnCl2,

1−16 and many more show intermediate range
order (IRO) in real space that is manifested in wave-vector
space as a first sharp diffraction peak (FSDP) in neutron and
X-ray diffraction experiments.7,17 What is remarkable is that
the FSDP is also seen in the molten state of a number of
chalcogenides and other covalent materials.18 For instance, the
FSDP peak found in the glassy phase of GeSe2 at 10 K survives
in the molten state at 1100 K with very little decrease in its
intensity.19 There has been considerable discussion about the
origin of IRO and the resulting FSDP in glassy and molten
states.20,21 Beyond adjacent tetrahedra, the medium- or
intermediate-range structure contains rings of tetrahedra and
other inter-connected units whose exact structures are not well
understood. In most neutron and X-ray experiments, only the
total structure factors, SN(q) and SX(q), are determined,22,23

and these are transformed into neutron-weighted total pair-
correlation functions, gN(r); information about partial pair-
correlation functions between atoms is usually not available.
This information can only be obtained if tedious neutron
experiments with isotope substitutions to vary neutron cross
sections are carried out, which is quite rare for FSDP neutron
experiments. Neutron data is often modeled using a reverse
Monte Carlo method.10,24 To explain the experimental data
and to investigate the origin of the FSDP, molecular dynamics
(MD) simulations using empirical inter-atomic potentials have

been carried out with a considerable degree of success.25−27

However, fully quantum mechanical calculations to achieve
quantitative comparison with neutron experiments are still
beyond the reach of density functional theory (DFT)
computations,28 even on petascale supercomputers, because
of the O(N3) computational cost. The required size of the
system to obtain pair correlations up to 30−40 Å range
requires a 10 000-atom DFT-based quantum molecular
dynamics (QMD) trajectory containing 50 000−100 000 MD
time steps.
Great advances have been made in machine learning

methods over the past few years.29−52 In particular, deep
learning methods based on neural networks have been able to
learn the potential energy surface (PES) and forces from QMD
trajectories of 200−400-atom systems run for 10 000−20 000
time steps, which is quite feasible with modest computing
resources.34,53−58 Using the energy and forces predicted using
deep neural networks, one can accomplish two main objectives
not accessible by direct DFT-based QMD simulations: (i)
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compute long trajectories involving billions of time steps
(microseconds) on moderate sized (10 000−100 000 atoms)
systems and (ii) compute billion-atom systems where long-
range defects, voids, and other phenomena between the range
of 10−100 nm are important.59

In this paper, we report neural network quantum molecular
dynamics (NNQMD) simulations with quantum mechanical
accuracy for GeSe2 glass at 10 K and melt at 1100 K, for a
quantitative comparison of FSDP height with the neutron
scattering data. Using a variety of structural correlations, we
also explore the origin of IRO in real space. The approach used
here provides an easily accessible method to analyze neutron
scattering data for glassy and molten systems.
GeSe2 is a typical chalcogenide material consisting of

Ge(Se1/2)4 tetrahedra as the building block.60−63 In the
crystalline phase GeSe2 contains both edge-sharing and
corner-sharing tetrahedra, which form a rather unique ring
structure64,65 of 2-, 3-, 8-, and 9-fold rings, but no 6-fold rings
common to corner-sharing structures. Beside the FSDP, the
ring size distributions in glassy and molten states are signatures
of IRO. Because each 4-coordinated atom, Ge, participates in
6-membered rings, the ring structure and its distribution are
very informative about the glassy and molten states. However,
the ring structure is not an observable quantity in neutron and
X-ray diffraction experiments.66

Figure 1 shows the proposed NNQMD-based computational
scheme to characterize IRO in GeSe2 and other glassy and

molten materials. There are three steps in our computation of
the neutron structure factor, SN(q), and the FSDP. The first
step involves computation of QMD trajectories for multiple
temperature−density conditions for an exhaustive sampling of
the PES and forces. It is critical to perform QMD simulations
that accurately reflect the PES for multiple GeSe2 atomic
configurations. We perform DFT simulations67 where
exchange-correlation effects are incorporated by using the
Generalized Gradient Approximation (GGA) of the exchange-
correlation functional,68−70 since it was previously found that
GGA is required to reproduce the FSDP in the total structure
factor of molten GeSe2.

71 GGA favors more ionic bonding,
promoting the formation of Ge(Se1/2)4 tetrahedra to stabilize
the intermediate range ordering between intact tetrahedra that
appears in the FSDP.72 It was found that, when the Local
Density Approximation is used in DFT simulations, the FSDP
is not present in molten GeSe2.

73 To produce training data, we
use a 384-atom system of glassy and molten GeSe2 using GGA-
DFT in the canonical NVT ensemble for 40 000 time steps
under a variety of density and temperature conditions. The
second step involves training of a deep neural network (DNN)
model for the PES and atomic forces on Ge and Se atoms in
molten and glassy GeSe2. The DNN learns a mapping from the
local environment of each Ge and Se atom in the system to
their atomic energy and forces, enabling large NNQMD
simulations with validated accuracies of QMD at a cost
comparable to that of classical MD simulations. In the third

Figure 1. Proposed scheme for intermediate range order in GeSe2, involving (a) QMD configurations to generate data for (b) training a neural
network to learn atomic energies and forces to (c) produce NNQMD trajectories for a 36 864-atom system. (d) These atomic configurations are
used to compute partial structure factors and FSDP.

Figure 2. (a−c) Comparison of pair distribution functions, gαβ(r), for (a) Ge−Ge, (b) Ge−Se, and (c) Se−Se from 384-atom QMD training data
(black) and 36 864-atom NNQMD (blue) of molten GeSe2 at 1100 K. Comparison of bond angle distributions (d) Ge−Se−Ge and (e) Se−Ge−
Se from QMD training data (black) and NNQMD (blue) at 1100 K.
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step, we use NNQMD on a 36 864-atom system over 200 000
time steps (1 fs time step) to thermalize the GeSe2 melt at
1100 K and create a glass by cooling the melt to 10 K at the
experimental density. The accuracy of NNQMD is validated by
comparing structural correlations with the QMD ground truth
(Figure 2).
In this study, all QMD simulations were carried out using

the VASP ab initio program.74,75 The electronic states in all
GeSe2 systems were calculated using the projector-augmented-
wave (PAW) method76 within the framework of DFT. The
exchange-correlation energy is represented by the Perdew−
Burke−Ernzerhof (PBE) functional based on the GGA.77 The
plane-wave cutoff energy of 500 eV was used for the
convergence of the wave function. Equations of motion for
Born−Oppenheimer MD were solved via an explicit reversible
integrator with a time step of 1.0 fs. The simulated GeSe2
systems contained 384 atoms (128 Ge and 256 Se atoms) in an
orthorhombic supercell (29.064 Å × 17.245 Å × 24.562 Å)
under periodic boundary conditions. Molten systems corre-
sponding to experimental number densities ρL = 3.114 × 1022

cm−3 62 were prepared by starting from an initial configuration
of the crystal.78 The convergence criterion was set to be 10−5

eV for each SCF iteration.
To construct the DNN potential energy and forces for

NNQMD of GeSe2, the ænet package was used for the training
process.53 Training and validation data consist of 2220 QMD
configurations, each with 384 (128 Ge and 256 Se) atoms.
Training and validation frames are obtained by uniformly
sampling every 10th frame from 22 000-step-long QMD
trajectories. The atomic neighborhood was featurized accord-
ing to the Behler scheme55 using 60 radial and 36 angular
symmetry functions to generate a 96-dimensional rotationally
and translationally invariant feature vector. For NNQMD, we
construct a DNN with two hidden layers, with 20 nodes for
each layer. The “scaled hyperbolic tangent” form was used as
the activation function.53 We used the limited-memory
Broyden−Fletcher−Goldfarb−Shanno method as the fitting
algorithm. With these conditions, the DNN was trained to
reproduce system energies and atomic forces over 500 epochs.
DNN accuracy is measured against a validation set of 111 (5%
of 2220 QMD configurations) frames. The root-mean-square
errors for atomic energies and forces in test data after 500
epochs of training are ΔE = 1.59 × 10−3 eV/atom and ΔF =
1.49 × 10−1 eV/Å. More details about training methodology,
feature vector construction, and metrics for NNQMD accuracy
are provided in the Supporting Information. The trained DNN

of the NNQMD scheme produces MD trajectories with
validated quantum mechanical accuracies, given enough
training data. This is shown in Figure 2a−c, where the partial
pair correlation functions, gαβ(r), for molten GeSe2 at 1100 K,
computed from a 36 864-atom NNQMD simulation, are
compared with the results from 384-atom QMD simulations.
The NNQMD-computed gαβ(r) and other structure factors are
fully consistent with QMD data up to 10 Å, which is larger
than the range of the feature vector used in the NNQMD
scheme. These plots show first-neighbor peaks in NNQMD
(QMD) data corresponding to Ge−Ge, Ge−Se, and Se−Se
correlations respectively at 3.66 Å (3.65 Å), 2.42 Å (2.43 Å),
and 3.94 Å (3.96 Å), which are very similar to the values found
in crystalline GeSe2, indicating that the covalent bonding
network and tetrahedral coordination around Ge in both
crystalline and glassy states are similar in nature.
In addition to the pair-correlation functions, another

important metric in determining the coordination of
neighboring tetrahedra in these structures is the bond angles
distribution between nearest-neighbor covalent bonds. Figure
2d,e shows the comparison between NNQMD and QMD
bond angle distributions in molten GeSe2 at 1100 K. The
figures demonstrate that NNQMD has learned the PES and
intra- and inter-tetrahedral co-ordinations and accurately
reproduces the Se−Ge−Se bond angle of 109°, corresponding
to the tetragonal angle, which compares favorably with the
QMD peak position of 110°. Similarly, NNQMD produces a
double-peaked distribution for Ge−Se−Ge covalent bond
angles, with a shoulder at 84° and a peak at 99°, compared to
QMD values of 82° and 99°. These positions correspond to
central Se atoms belonging to edge-sharing and corner-sharing
Ge(Se1/2)4 tetrahedra. The broad patterns in the bond angle
distributions without sharp peaks confirm that the synthesized
sample is in the molten state.
While such short-range correlations of comparable quality

have previously been observed in other QMD or classical MD-
based simulations,62,73,79 the true strength of the NNQMD
scheme is in capturing the IRO in glassy GeSe2 systems to
enable a quantitative comparison with neutron experiments.
Intermediate order in GeSe2, which reflects the connectivity
between adjacent Ge(Se1/2)4 tetrahedra, can be inferred from
statistics of n-fold rings structures. Table 1 shows the
computed statistics of Ge−Se−Ge−Se··· n-fold rings in
GeSe2 crystal and molten GeSe2. The table summarizes the
total number of n-fold rings (n = 2−12) present in each of the
three GeSe2 systems: (a) crystalline GeSe2 from experimental

Table 1. Comparison of n-Fold Ring Statistics for Crystalline GeSe2 (red), Molten 384-Atom QMD (black), and Molten
30 720-Atom NNQMD (blue) at 1100 Ka

aThe figure shows the distribution of ring sizes in crystalline and NNQMD-generated GeSe2 samples. Results in the table and figure are normalized
to 100 Ge for easier comparison.
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crystal structure data, (b) QMD-generated molten GeSe2 at
1100 K, and (c) NNQMD-generated molten GeSe2 at 1100 K.
Since the ring statistics are size-extensive, the metrics
computed for the three systems are normalized to 100 GeSe2
molecules for easier comparison. The ring statistics for
crystalline GeSe2 are computed from the reported experimental
crystal structure,78 while the QMD and NNQMD statistics are
computed from configurations of 384 and 30 720 atoms at
1100 K, respectively. The crystalline system contains only 2-,
3-, 8-, and 9-member rings, while the molten system in both
QMD and NNQMD contains rings spanning 2−12 members.
It is notable that the 8-member rings containing edge-sharing
tetrahedra are substantially reduced (from 50% to 28%) on
melting the crystal to produce the glassy GeSe2.
The most important advantage of the NNQMD scheme lies

in its ability to extend QM-accurate simulations to classical

MD length and time scales, enabling computation of properties
and on systems not accessible to QMD simulations. This
capability allows NNQMD to bridge the gap between existing
QMD calculations of the FSDP with the experimental neutron
measurements. To quantify such finite-size effects in the IRO
of GeSe2, we compute the total structure factor, SN(q), and
height of the FSDP using NNQMD for three system sizes: 384
atoms, 4608 atoms, and 36 864 atoms. All three systems are
simulated at 1100 K and at identical densities of 3.98 g/cm3.
The importance of simulations on the system size is
demonstrated in Figure 3a−d, which compares the Sαβ(q)
and SN(q) between a 384-atom QMD system of molten GeSe2
at 1100 K and a 38 684-atom NNQMD system of molten
GeSe2 at the same temperature and density.
For an exhaustive comparison between neutron experiments

and simulations, correlations in both r-space and q-space must

Figure 3. To show the system size effect, we compare partial structure factors Sαβ(q) for molten GeSe2 at 1100 K from 384-atom QMD (red) and
36 864-atom NNQMD (blue) (a−c), along with the total neutron structure factor SN(q) for the molten GeSe2 (d).

Figure 4. (a−c) Partial structure factors Sαβ(q) for molten GeSe2 from the 36 864-atom NNQMD trajectory at 1100 K. FSDP is clearly manifested
in Ge−Ge correlations at 1 Å−1. (d) Total neutron structure factor SN(q) for the molten GeSe2 from NNQMD and experiment9 (red circles). The
FSDP is marked by a green arrow. (e) The computed height of the FSDP increases with increasing system size, saturating at a height of 0.77 for the
largest system size of 36 864 atoms, consistent with experiments.
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be considered. In many cases, satisfactory agreement in r-space
does not guarantee good agreement in q-space. For instance,
Figure 2 shows acceptable agreement in r-space between 384-
atom QMD and 36 864-atom NNQMD, but the agreement in
Sαβ(q) for the same systems shown in Figure 3 is considerably
worse. The comparison with QMD simulations reveals that the
smaller size of the QMD simulation cell results in lower peaks
in the partial and total structure factors. The larger simulation
cell possible in NNQMD increases the height and sharpness of
the FSDP.80

Figure 4 shows the NNQMD partial structure factors Sαβ(q)
for molten GeSe2 at T = 1100 K and a comparison of
NNQMD SN(q) with the neutron scattering data. Our results
for the SN(q) are in good agreement with the experimental data
of refs 2, 8, and 19. NNQMD SN(q) shows that the FSDP has
the correct height and position, in agreement with the
experimental data. FSDP is the small wave vector peak (at
∼1.0 Å−1), which is a universal signature of IRO.1,81−86 From
the partial structure factors, we can see that the FSDP at ∼1.0
Å−1 arises mainly from Ge−Ge correlations, in good agreement
with prior MD data and also supported by inference from
differential anomalous X-ray scattering data.87,88 In addition to
the position and height of the FSDP, the heights of other peaks
in the total neutron structure factor (Figure 4d) are
quantitatively consistent with prior neutron diffraction
experimental data on molten GeSe2.

19 This quantitative
accuracy is a reflection of the extremely good representation
by the NNQMD scheme to capture true quantum mechanical
correlations, which are responsible for the emergence of the
IRO in the molten and glassy systems. This quantitative
agreement in both the position and height of the FSDP in
molten GeSe2 is not possible without simulations on large
systems that are possible only with NNQMD. Figure 4e shows
that the height of the FSDP increases in the NNQMD system
with increasing system size, reaching 0.77 for the largest system
size, which is in excellent agreement with neutron scattering
experiments. The error of the sample mean is proportional to
1/√N, where N is the number of samples. A smaller system
may suffer from statistical error in the FSDP estimate, which
can be substantially improved by increasing system size. Based
on the sample error formula, we expect roughly an order of

magnitude error reduction, 384/36 864 ≈ 0.1, in the largest
system size of 36 864 atoms compared to the system of 384
atoms. The second peak in the total neutron structure factor
arises primarily from the Se−Se pair correlations, since the
anti-correlation due to Ge−Se is overcome by Ge−Ge and
Se−Se correlations.
Minor disagreements between experimental results and the

results from the largest system NNQMD simulations are to be
expected. QMD simulations based on DFT have inherent
errors due to the use of pseudopotential approximation and
local density approximation for exchange correlations. There-
fore, the disagreement between experimental results and
NNQMD-based simulations may be used as a guide to
improve upon various approximations used in DFT-based
QMD simulations. Disagreement between experimental and
simulation results at 1100 K for the molten system can also be
partially attributed to technical difficulties in the high-
temperature neutron diffraction experiment.
The FSDP was observed in neutron and X-ray diffraction

experiments on molten and glassy GeSe2. NNQMD
reproduces this observation as shown in Figure 5, which
compares partial structure factors Sαβ(q) and total SN(q) in the
vitreous phase (T = 10 K) from NNQMD with the
experimental neutron scattering data. Vitreous GeSe2 struc-
tures are generated by cooling the molten GeSe2 system at
1100 K in steps of 100 K down to 10 K. Subsequently,
structural metrics are evaluated over 1000 MD configurations,
separated by 20 time steps. It is well known from previous
experiments and prior simulations that the total height of the
FSDP in the glassy phases of GeSe2 is slightly higher in
magnitude compared to that of the molten GeSe2 at 1100 K,
whereas the other peaks become sharper and narrower on
cooling to the glassy phase. This near-similar height of the
FSDP between the molten and glassy phases is mainly a result
of lower temperature for the glass density, whereas the
structures of the melt and glass are topologically almost the
same, as characterized by the pair-correlation functions, bond-
angle distributions, and the n-fold ring statistics.
Having obtained quantitative agreement with neutron

diffraction data for the FSDP position and height, NNQMD
provides a robust method to understand the atomistic basis for

Figure 5. (a−c) NNQMD partial structure factors Sαβ(q) for glassy GeSe2 at 10 K (blue) along with (d) the 36 864-atom NNQMD neutron
structure factor SN(q) for the glassy GeSe2 at 10 K and the experimental neutron data for the glassy GeSe2 at 10 K.9
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the emergence of the IRO. The NNQMD scheme enables
computation of structural metrics in real-space like gαβ(r) and
in reciprocal space like Sαβ(q) for a direct comparison with
experiments. Both real-space and reciprocal-space comparisons
are essential to obtain a comprehensive characterization of the
local structure of glassy materials. The small discrepancies
between NNQMD and experimental structures are inherent in
the QMD simulations used for training, which are limited by
approximations used in DFT (exchange-correlation and
pseudopotentials). This shortcoming may be overcome by
using more accurate quantum simulation techniques for
generating training data, which is possible by using DFT
methods that go beyond the LDA and GGA approximations to
include exact exchange and higher level approximations for
electronic correlations.89−92 Alternatively, wavefunction-based
methods like Green’s function Monte Carlo can also be used to
treat electron correlations without the constraints of an
exchange-correlation approximation used in DFT, while
remaining within the framework of pseudopotential approx-
imation.93−95 However, quantum chemistry-based higher-order
methods that treat all electrons without the pseudopotential
approximation, as well as techniques like CCSD(T), are
currently not feasible for simulating small (384 atoms, ∼2000
valence electrons) GeSe2 systems to produce training data for
deep learning MD simulations.
To explain the experimental data and to investigate the

origin of the FSDP in GeSe2, previous MD simulations using
empirical inter-atomic potentials were carried out with a
considerable degree of success. These studies suggest that the
FSDP in the structure factor of glassy and molten GeSe2 arises
from Ge−Ge correlations,19,80,85 which can be understood as
analogous to a Bragg-like peak arising from an inter-connected
Ge−Ge tetrahedral network at intermediate distances. We find
no evidence of layered structures at intermediate distances.
Such an explanation will run counter to the observation of
FSDP of nearly the same height in molten GeSe2 at 1100 K.
Therefore, the FSDP is better explained by a combination of
steric and Coulomb forces giving rise to Ge(Se1/2)4 tetrahedral
units where the charge of a 4-fold-coordinated Ge atom is
locally compensated by the 2-fold-coordinated Se atoms.
These locally charge-neutral tetrahedral units form a network,
and the correlations over distances characterized by the local
charge-neutrality result in the FSDP.64

We have developed a quantum mechanically validated
NNQMD scheme for the computation of structural
correlations in real space and wave vector space to examine
the intermediate range ordering of GeSe2 in crystalline, glassy,
and molten phases. This new scheme complements conven-
tional QMD simulations and classical MD approaches based
on empirical force fields by combining the quantum
mechanical accuracy of QMD and the computational efficiency
of MD to investigate the structural basis for the appearance of
the FSDP, which is in quantitative agreement, in both position
and intensity, with the experimental neutron diffraction data.
Our method for analysis of IRO in molten and glassy materials
is highly scalable, and its accuracy depends only on the quality
of the QMD training data used to train the deep neural
network. The scheme used here is quite general and may
become a standard computational tool to analyze neutron
scattering data for glassy and molten systems.
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