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The static dielectric constant ε0 and its temperature dependence for liquid water is investigated using
neural network quantum molecular dynamics (NNQMD). We compute the exact dielectric constant in
canonical ensemble from NNQMD trajectories using fluctuations in macroscopic polarization computed
from maximally localized Wannier functions (MLWF). Two deep neural networks are constructed. The
first, NNQMD, is trained on QMD configurations for liquid water under a variety of temperature and
density conditions to learn potential energy surface and forces and then perform molecular dynamics
simulations. The second network, NNMLWF, is trained to predict locations of MLWF of individual
molecules using the atomic configurations from NNQMD. Training data for both the neural networks is
produced using a highly accurate quantum-mechanical method, DFT-SCAN that yields an excellent
description of liquid water. We produce 280 × 106 configurations of water at 7 temperatures using
NNQMD and predict MLWF centers using NNMLWF to compute the polarization fluctuations. The length
of trajectories needed for a converged value of the dielectric constant at 0°C is found to be 20 ns (40 × 106

configurations with 0.5 fs time step). The computed dielectric constants for 0, 15, 30, 45, 60, 75, and 90°C
are in good agreement with experiments. Our scalable scheme to compute dielectric constants with
quantum accuracy is also applicable to other polar molecular liquids.
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The large dielectric constant of liquid water, ε0 ≅ 78 at
room temperature [1], plays a crucial role in determining its
physical and chemical behavior. This large dielectric
constant is also responsible for the excellent solvation
properties of water and its importance in biological
systems. Predicting the dielectric constant of water has
long been a challenge for quantum theory. Simulations and
theory at various levels of sophistication have been used
over decades to compute ε0 for liquid water. However, a
fully quantum mechanical calculation of the dielectric
constant without any ad hoc assumptions regarding struc-
tural correlations in water has not been possible yet. The
primary challenge in obtaining ε0 from quantum simula-
tions is the requirement for very long (tens of nanoseconds)
trajectories, to accurately compute polarization fluctuations
to compute ε0, which are out of reach even on a petascale
supercomputer using quantum molecular dynamics.
After the seminal paper on water in 1933 by Bernal and

Fowler [2], the first attempt to compute dielectric constant
of liquid water in 1951, was made by Pople [3], who
adapted Kirkwood’s theory [4] by postulating that the main
effect of liquid disorder was to bend the hydrogen bonds
while the fourfold ice coordination was preserved. This is

reflected in the r-dependent Kirkwood G factor GKðrÞ,
which is an orientational correlation function for molecular
dipoles (r is interatomic distance) [5]. By adopting a
distribution of the bending angles to fit the pair-correlation
function obtained from x-ray experiments in the 1930s,
Pople estimated the correlation factor GKðrÞ to be ∼2.5.
This yielded a dielectric constant of ∼64, in fairly good
agreement with experiment. After the invention of the
molecular dynamics (MD) method in 1964 by Rahman [6],
and the pioneering study of aqueous solutions by Rahman
and Stillinger [7], it has been possible to compute the
dielectric response of water using classical MD, but with
rather limited success. Most computer simulations of water
for dielectric properties are performed using empirical
potential functions with point charges that do not account
for many-body induced polarization effects explicitly [8].
Owing to these approximations, MD simulation of the
dielectric constant remains challenging [9–13], especially
at low temperatures. Factors such as the interatomic
potential [14,15] and length of MD trajectory needed for
the convergence are serious limitations [16].
Recently, neural networks and the radial and angular

feature vectors introduced by Behler and Parrinello [17–25]
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can model the potential energy surface and forces of a
multicomponent system upon training with QMD data
produced within density functional theory (DFT) with a
suitable exchange-correlation function. Suchmachine learn-
ing methods have been successfully used for defect migra-
tion, structural stability, andmany properties onmaterial and
chemical systems [26–31]. Marzari and Vanderbilt [32] in
1997 proposed maximally localized Wannier functions
(MLWF), which are obtained as a unitary transformation
that minimizes the spread of ground-state DFT Kohn-Sham
orbitals [33] for computing polarization and implemented
their method into electronic structure codes. Great strides
have been made by Parrinello, Car, Galli, and Gygi [34–37]
and collaborators to compute polarization in liquid water
using MLWF and the r-dependent Kirkwood G factor
GKðrÞ. Important advances were made by Car and collab-
orators in using neural networks to fit DFT computed
MLWFs for water and using these to predict trajectories
for the computation of infrared spectra [38–41].
We propose an end-to-end scheme that uses only atomic

coordinates, energies, and forces for a deep neural network
training and the second neural network to map input atomic
coordinates into output MLWF locations. The proposed
scheme is size extensive, preserves translational, rotational,
and permutational symmetries, and yields a converged
value of the polarization fluctuation, given sufficiently
long trajectory.
Figure 1 shows the steps involved in the computation of

the dielectric constant using the two deep neural networks.
There are seven steps in our computation of ε0 for liquid
water. (i) Computation of QMD trajectories for several
temperature-density conditions for an exhaustive sampling
of the potential energy surface and forces. Since these data
will be used to train both neural networks in the dielectric
constant scheme, it is critical to perform QMD simulations
that accurately reflect the potential energy surface based on
the DFT where exchange-correlation effects are incorpo-
rated by the highly accurate SCAN functional [42]. A
216 molecule system of liquid water is run using a DFT-
SCAN in an NVT ensemble for 40 000 time steps under a
variety of density and temperature conditions. (ii) Training
of a deep neural network with two hidden layers using
52-dimensional rotationally and translationally invariant

32 × 106 feature vectors. The quality of NNQMD training
is tested on a 41 472 atom and 1 119 744 atom water
systems by computing structural and dynamical correla-
tions (Fig. 2). (iii) Using NNQMD, we compute 40 × 106

time steps (with a time step of 0.5 fs) at 7 temperatures from
0°C to 90°C for a total of 280 × 106 steps. (iv) MLWF and
their locations are computed for 3000 DFT-SCAN con-
figurations for training the second deep neural network,
NNMLWF. (v) This deep neural network is then used to
predict the locations of MLWF for 56 × 106 NNQMD
configurations. (vi) For each temperature NNMLWF pre-
dicted configurations are used to compute hM2i and hMi2
to determine ε0. (vii) ε∞ is computed using the Berry phase
method for liquid water configurations and averages are
performed to get an ensemble average [43–45].
We use the ænet method for training energies and forces

[18]. In this work, as the fitting algorithm, the limited-
memory Broyden-Fletcher-Goldfarb-Shanno method was
employed. We used a neural network consisting of two
hidden layers with modified scaled hyperbolic tangent [18]
as the activation function [46].
The DFT simulations [54,55] using local functionals like

the generalized gradient approximation (GGA) [56–58]
have been used to understand high-pressure, confined, and
reacting phases of water, but liquid water presents a major
challenge in the choice of exchange-correlation function.
Perdew and Klein and their collaborators have demon-
strated that a meta-GGA based on the SCAN functional
[42] captures the density difference between ice and water
at ambient conditions and predicts structural, electronic,
and dynamic properties of liquid water in good agreement
with experiments.
Our approach extends the spatial dimensions of the

systems and the length of time trajectories not achievable
by QMD simulations. It is therefore possible to study
structural and dynamical correlations, rare events, such as
crystal nucleation [59], with enhanced sampling method-
ologies in simulations of QMD quality at a cost that is
several orders of magnitude lower. On the current petascale
supercomputers, it is possible to investigate billion atom
systems and for microsecond timescales.
In NNQMD simulations with periodic boundary

conditions, the dielectric constant of an isotropic and

FIG. 1. Dielectric constant computation involves linking. (a) Neural networks trained on DFT-SCAN configurations to produce
280 × 106 time step NNQMD trajectory with (b) training a deep neural network for MLWF locations and predicting the MLWF centers
for the 280 × 106 time step trajectory. (c) Polarization fluctuations are computed for configurations over a 20 ns long NNQMD trajectory
for each temperature to calculate the dielectric constant for liquid water.
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homogeneous fluid can be calculated using the fluctuation
formula [39,60,61],

ε0 ¼ ε∞ þ 4π

3kBT Ω
ðhM2i − hMi2Þ; ð1Þ

where ε0 is the static dielectric constant, T is temperature,Ω
is volume. and h i denote the canonical ensemble averages.
The total polarization is given as M ¼ P

i μi [62]. The
higher dielectric constant of water can be associated with
the presence of a H-bond network [39]. Owing to the
complexity of the H-bond network and its competition with
thermal fluctuations, a molecular-level understanding of the
structure of water remains elusive [63]. The presence of
hydrogen bonding slows down dipolar fluctuations and
leads to longer convergence times. The high cost of
evaluation of Eq. (1) has been a strong motivation for
the development for an efficient approach using deep
neural network based NNQMD and NNMLWF simulation
methods.
MD simulations using empirical potentials have shown

that trajectories longer than 10 ns are necessary for the
convergence of dielectric constant [64,65]; these are not
practically feasible with QMD simulations. NNQMD
produces quantum-accurate trajectories for liquid water
that are sufficiently long to capture dielectric relaxation and
reorientation of the H-bond network and enable accurate
computation of the dielectric constant.
Figure 2 shows the radial distribution functions gðrÞ,

and bond-angle distributions of liquid water generated by

NNQMD simulations. The gðrÞ for H─H, O─H, and O─O
[Figs. 2(a), 2(c), and 2(e)] show that NNQMD reproduces
the intramolecular O─H bond length as well as the radial
position of the second and third solvation shells. The
intramolecular H─O─H bond-angle distribution involving
only covalent bonds (CB) [Fig. 2(d)] agrees well with the
DFT-SCAN internal angle of 105°. More importantly, the
distributions for intermolecular bond angles, O─H � � �O
involving the CB and H bond, and the H � � �O � � �H angle
involving both H bonds, where single dash indicates CB at
0.97 Å and double dash indicates H bond at 1.75 Å, are also
in good agreement with the ground truth.
There is no direct method to experimentally determine

the H-bond lifetime [66]. For example, vibrational relax-
ation times of 0.74 ps have been reported for water [67],
whereas observed rotational relaxation times range from
0.6 [68] to 2.1 ps [69]. A computational estimate of H-bond
lifetimes largely depends on the definition of the H bond
[66]. In our investigation, we use the joint angle-distance
criterion, where the intermolecular O─H distance rOH is
less than C1

OH þ C2
OH cos θ, where θ is the angle between

one oxygen and two inter- and intramolecule hydrogen
atoms. C1

OH and C2
OH are parameters depending on the

phase of water [70]. For room temperature water C1
OH ¼

1.37 ðÅÞ and C2
OH ¼ −1.71 ðÅÞ are used. We compute

H-bond lifetimes using the population time correlation
function,

CðtÞ ¼ 1

Nt¼0
HB

XNW

i¼1

XNW

j<i

hijð0ÞhijðtÞ; ð2Þ

where NW is the number of water molecules in the
simulation, Nt¼0

HB is the number of H bonds at t ¼ 0

[71].hijðtÞ is the H-bond state function, which is unity
as long as the pair of molecules i and j remain H bonded.
The function becomes zero and remains zero after the
first time the H bond is broken. Figure 3 shows the
H-bond population correlation from NNQMD trajectories.
Validation is provided from QMD. The NNQMD decay
time at 30°C of 0.976 ps agrees with the range of values,
0.6–2.1 ps from experiments.

FIG. 2. (a),(c),(e) Comparison of pair distribution functions gðrÞ
for H─H, O─H, andO─O fromDFT-SCAN (black) and NNQMD
(blue) at 30 °C. (b),(d),(f) Distributions of the intramolecular
H─O─H angle with both the CB and O─H──O angle with CB
and H bond, and the H─O─H angle with both H bonds between
DFT-SCAN and NNQMD. NNQMD reproduces structural details
of liquid water. The single dash is covalent bond 0.97 Å and the
double dash is theHbond at 1.75Å.DFT-SCAN results for gðrÞ are
in excellent agreement with neutron experiments.

FIG. 3. Time decay of the H-bond population correlation in
water as a function of temperature from NNQMD. NNQMD is
validated with QMD, as shown in the table.
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From the NNQMD liquid water configurations we
compute the dipole moment,M⃗; that is the sum of molecular
moments calculated using the MLWF centers. The dipole
moment of a single water molecule comes from the
summation of qr⃗ij where r⃗ij is the vector pointing from
the position of the MLWF centers and the position of the
hydrogen to the oxygen in the individual water molecule.
The charges, q, of the MLWF centers are −2 and atomic
site of H is þ1 and O is þ6.
The quantum computation of MLWF centers for millions

of configurations is intractable even on petascale super-
computers. We use a deep neural network, NNMLWF,
that predicts the location of MLWF centers for individual
water molecules using the coordinates of atoms in the
molecule and its surroundings [35] within the local frame
of the molecule. We use a relatively short range for the
NNMLWF feature vector as a consequence of the principle
of nearsightedness of electronic matter [60,61]. The
NNMLWF is trained on MLWF centers computed for
3000 liquid water configurations generated from a DFT-
SCAN. NNMLWF uses symmetry preserving smooth
feature vectors by transforming them to the molecular
frame from the laboratory frame by a unitary transforma-
tion. The NNMLWF model can predict the location of the
four MLWF centers in the molecular frame that are then
transformed back into the laboratory frame by performing
the reverse unitary transformation, with an accuracy of
0.025 Å. This scalable NNMLWF scheme can therefore be
applied to millions of independent configurations from
NNQMD. Initially, the DFT-SCAN is used to train the
NNQMD model, which generates 20 ns trajectory of liquid
water for each temperature. These configurations are then
provided as inputs to NNMLWF, which predicts the
location of MLWF centers for each water molecule in
each configuration. These MLWF centers are used to
compute the dipole moments for molecules that are then
summed up to get the polarization for the configuration of
liquid water, whose fluctuations in the canonical ensemble
is then used to calculate the dielectric constant.
The positions of the four MLWF [33,72] of a water

molecule are along the two covalent O─H bonds and on
two lone pairs of oxygen, which is in the direction of
the hydrogen bonds. Figure 4 shows the distribution of the
dipole moments of water molecules computed using the
NNMLWF compared to the distribution of dipole moments
computed from MLWF computed with DFT-SCAN, the
ground truth. Individual molecular moments in water are
not experimentally accessible, reflecting a basic arbitrari-
ness in partitioning the electronic charge between individ-
ual molecules in a condensed environment [38,73]. In this
context, experimental estimates such as 2.9� 0.6 D [74]
based on the measured x-ray form factor of liquid water,
or theoretical estimates based on various partitioning
schemes [34,75,76], should be only taken as reasonable
estimates. For isolated water molecules, the MLWF based

on a DFT-SCAN gives a dipole moment of 2.2 D, whereas
most sophisticated configuration interaction (CI) theory
[77] gives a value 1.854 D that is in excellent agreement
with the experimental value of 1.855 D [78]. The discrep-
ancy between DFT-SCAN value, 2.2 D, and the exper-
imental value that is in excellent agreement with CI value,
1.854 D [78], is a result of three approximations in all
DFT based electronic structure calculations: (i) the local
density approximation in DFT, (ii) pseudopotential
approximation versus all electron computation in CI, and
(iii) approximation of transforming the full electronic
charge density into MLWFs. These three approximations
result in an error of about 18% over estimation in the
predicted DFT-SCAN dipole moment of an isolated water
molecule, which leads to an 18% over estimation of
computed polarization M⃗.
Once the NNMLWF is validated, we compute the dipole

moment correlations from 20 ns NNQMD trajectory. The
formula used to calculate the dielectric constant is

ε0 − ε∞ ¼ 4πΔM2

εvac3ΩkBT
;

whereΔM2¼hM2i−hMi2 andMðtÞ¼PNMol
j

PNatom
α ½rαjðtÞ−

r0jðtÞ�qαj, where Natom is the number of H atoms and
MLWF centers in the molecule j. qαj is the charge on atom
α, rαj is the position of the MLWF centers and rHj location
of H atoms and r0j is the position of the O atom. We have
computed the high-frequency dielectric constant, ε∞ to be
1.79, consistent with experiments [79]. Results are shown
in Fig. 5.
The dielectric constant is computed for 7 temperatures in

between 0°C to 90°C. Fluctuations are computed from the
configurations every 20 fs apart along the NNMLWF

FIG. 4. The distribution of molecular dipole moments com-
puted from the MLWF centers prediction from NNMLWF and the
distribution of moments from DFT-SCAN, the ground truth.
(a) 30°C and (b) 90°C. The value of mean and standard deviation
between the two distributions validates the use of NNMLWF for
the computation of the dielectric constant. (Inset) Centers of
MLWF (green) in an isolated water molecule are localized along
the O─H bonds and on the sp3 lone pairs on the O atom.
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trajectory. Previous MD simulations with empirical poten-
tials have shown that the computed fluctuations and the
resulting dielectric constant values are independent of the
frequency of sampling from 1 fs up to 100 fs [64].
Dielectric properties of water require extremely long

configuration space trajectories due to a slow reorienta-
tional relaxation rate in the H-bond network [62,80]. The
time required for convergence varies dramatically with
temperature from <5 ns at 90°C to >20 ns at 0°C, as
shown in Figs. 5(a)–5(c). It should be pointed out that the
values of polarization, M, have been scaled down by 18%
to accommodate the inherent shortcomings of DFT imple-
mentation with the best possible choice of exchange-
correlation potential SCAN, the pseudopotential for H
and O, and the implementation of MLWF to represent
the total electronic charge density. Figure 5(d) shows that
the computed values of the dielectric constant are consis-
tent with experimental values of dielectric constant of
liquid water in the range of 0�100°C [81,82] using a
RF resonator to an accuracy of 0.2%.
The simulations presented here do not consider the

nuclear quantum effects [83,84]. This is because ab initio
path integral molecular dynamics is computationally too
expensive to obtain 20þ ns long trajectories and NQE
have relatively small effect on the dipole moment in water
[85]. However, it should be pointed out that the dielectric
constant of H2O (78.45) and D2O (78.08) at 25°C are

practically identical in value [1], implying that the quantum
effects in the motion of hydrogen are negligibly small for
the dielectric constant of water.
The system size dependence of the dielectric constant is

rather small, which is advantageous for QMD. Previous
studies have shown that the dielectric constant value
computed for a system size of 108 molecules [62,80]
and 216 molecules is consistent with values computed from
a 20 000 molecule system [64].
In summary, we have constructed a physics-based

integrated approach for the computation of the dielectric
constant of a polar fluid that combines two deep neural
networks, NNQMD and NNMLWF. The approach com-
bines the quantum mechanical accuracy of QMD and the
computational efficiency of empirical potential models to
compute the dielectric constant of water, ε0. The accuracy
of our method depends on judicious choice of a deep neural
network and on the quality of the training data, which
can be further improved by using improved exchange-
correlation functionals beyond SCAN, which will produce
the dipole moment of an isolated water molecule in
agreement with the experimental data.
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