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Abstract. Machine learning (ML) is revolutionizing scientific and engineering disciplines owing 
to its ability to capture hidden patterns in large amounts of data. The recent success of ML can 
be attributed to increasing amount of data, simulation resources, and improving understanding 
of statistical inference. For these reasons computational materials science is undergoing a 
paradigm shift. The main reason is that trial-and-error approach to materials design is inefficient: 
laboratory trials require a lot of time, and the results of previous trials are not utilized in a 
systematic fashion. A data-driven approach, which draws upon all relevant data from 
experiments, and reactive and quantum molecular dynamics simulations, can address these 
issues. The MAGICS (Materials Genome Innovation for Computational Software) Center 
develops to aid the synthesis of stacked layered materials by chemical vapor deposition, 
exfoliation, and intercalation. The identification of different phases is a classification problem 
and can be solved using ML techniques. We have used feed-forward neural network with three 
hidden layers to identify the different phases present during computational synthesis of MoSe2. 
Our goal is to carry out exascale MD simulations using forces for multimillion-atom quantum 
dynamics simulations from neural networks and deep learning using small QMD simulations. 

1. Reactive Molecular Dynamics Simulations of Computational Synthesis 
The reactive molecular dynamics (RMD) method has enabled large-scale simulations of chemical events 
in complex materials involving multimillion atoms [1-3]. In particular, RMD simulations based on first 
principles-informed reactive force fields (ReaxFF) [4] describe chemical reactions (i.e., bond breakage 
and formation) through a bond-order/distance relationship that reflects each atom’s coordination change. 
ReaxFF–RMD simulations describe full dynamics of chemical events at the atomic level with 
significantly reduced computational cost compared with quantum-mechanics (QM) calculations. 
ReaxFF consists of a number of empirical force-field parameters in its functional form, which are 
optimized mainly against a QM-based training set that includes not only energies of small clusters (e.g., 
full bond dissociation, angle distortion and torsion energies) and reaction energies/ barriers for key 
chemical reactions, but also bulk properties of crystal systems. ReaxFF has shown its ability to 
successively study chemical, physical and mechanical properties of a wide range of complex materials 
such as hydrocarbons, high energy materials and metal/transition-metal systems. These qualities, most 
notably, the near-quantum accuracy, ability to model very large materials systems, while retaining 
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atomic resolution have made ReaxFF-RMD an invaluable method for investigating atomic-scale 
mechanisms and reaction pathways encountered in chemical reactions involved in synthesis of 
functional engineering materials. Such computational modelling, particularly reactive molecular 
dynamics (RMD) simulations, can provide useful insights into interfaces [5] and surface−gas 
interactions [6] on model systems down to atomic length scales. At MAGICS Center, we have performed 
extensive ReaxFF-RMD simulations of a technologically important chemical reaction – that of 
computational synthesis of MoS2 structures using MoO3 surfaces and gaseous S2. Molybdenum disulfide 
(MoS2), one of archetypal transition metal dichalcogenide (TMDC) materials, has received much 
attention owing to its unique physical, chemical, and mechanical properties.[7] MoS2 monolayer has a 
high band gap, high carrier mobility, exceptional mechanical strength, compared to conventional Si. [8, 
9] for potential use in applications such as ultra-thin channel materials for transistors.[10, 11] 

 

Figure 1. (a) Hierarchy of molecular 
dynamics methods demonstrating the 
tradeoff between computational cost and 
accuracy and accessible length scales. (b) 
and (c) show the prototypical 
configuration and results of 
computational synthesis of MoS2 from 
MoO3 precursors deposited on Al2O3 
substrates. Specifically, ReaxFF-RMD 
simulations accurately describe the O2 
evolution and self-reduction of the O-
rich MoO3 layer at high temperatures 
characteristic of CVD synthesis. 

To bring MoS2 into mass production, numerous effort has been made, including physical vapor 
deposition, mechanical exfoliation, hydrothermal synthesis, and CVD.[10, 12] Among these techniques, 
CVD is the most practical and scalable way to synthesize large-scale and high-quality MoS2 layer on 
the target substrate.[13, 14] However, optimal conditions for CVD synthesis of highly-crystalline MoS2 
layers have yet to be fully investigated. Deciphering selection rules for different growth scenarios (e.g. 
temperature cycles and annealing schedules) to make predictions of optimized environmental 
parameters and growth factors has remained unclear due to a lack of understanding of mechanistic 
processes for CVD growth of MoS2. At MAGICS Center, we performed multimillion-atom RMD 
simulations, which allows an atomic scale insight into reaction dynamics of nanostructured materials,[5] 
to investigate grain formation and evolution of line defects and their healing process. Our RMD 
simulations are based on the first-principle-informed ReaxFF [15] reactive force field, which was 
previously used and validated for CVD synthesis reactions.[16, 17] Specifically, we investigate the 
effect of temperature cycling and annealing schedules on the local atomic structures encountered during 
CVD synthesis by performing multimillion-atom RMD simulations of quenching/annealing steps.  

 
Figure 2. Annealing schedule and phase composition in the RMD simulation shows 
increase in fraction of crystalline 1T and 2H with lower annealing temperature (b) This 
is also reflected in the phase fraction maps plotted at t = 2.2 ns and t = 7.1 ns. These 
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maps are plotted by assigning a colour to each atom in the reacting substrate based on 
local atomic configurations. 

Our computational model for RMD simulations consists of 4,305,600 atoms. The system dimensions 
are 211.0 × 196.3 (nm2) in the x-, and y-directions. ReaxFF reactive force field parameters were taken 
from Hong et al.[17] which can reproduce critical reaction steps for CVD synthesis of MoS2 (i.e., O2 
evolution and SO/SO2 formation), validated through experimental literature and DFT calculations [16] 

2. Machine Learning for Analysis and Classification of Local Atomic Structures 
MD simulation of physical and chemical phenomena of materials requires complex data analysis of the 
simulation results to identify different phases, chemical reaction and defects. Identification of different 
phases and defects requires complex structural analysis ranging from calculation of nearest neighbours 
to shortest circuit analysis of atoms. Traditional approaches for structural analysis like common 
neighbourhood analysis and centro-symmetry parameter calculation only work for mono-atomic 
systems and can not distinguish 2H and 1T phases in TMDC crystals contains transition metal, TM and 
chalcogen, X. Both 2H and 1T structures have the same number of nearest neighbours due to which 
nearest-number analysis is not able to distinguish these structures. Compared to these traditional 
approaches, our NN model is able to define a unique order parameter that identifies these phases with 
high accuracy, is highly scalable and can used to analyse large data set quickly. To build a NN model 
for structural analysis, we have represented each atom by 436-dimension feature vector, made up of 
radial and angular symmetry functions (Figure 3b). Figure 3 shows the learned representation of the data 
set at the first and third layer of the neural network and the original feature vector using t-distributed 
stochastic neighbour embedding (t-SNE) [22], which is a dimensionality reduction technique that 
represents high-dimensional data in a lower dimension. The data is plotted for an example MoSe2 TMDC 
structure [18] that contains 2H, 1T and defective regions. The separation between the six phases become 
clearer in the third hidden layer as compared to in hidden layer 1 and the original feature space.  

 

Figure 3: (a) Schematic of a 
deep fully connected neural 
network used for structure and 
phase classification of an 
example MoSe2 TMDC structure 
(b) Radial (2-body) and Angular 
(3-body) symmetry functions for 
constructing feature vectors from 
local configurations around each 
atom. (c) t-SNE representation of 
different atomic configurations 
showing that the neural network 
has learned to discriminate 
different phases in the input data. 

3. Machine Learning of Interatomic Forces for Molecular Dynamics Simulations 
Machine Learning models have proven to be capable of learning highly complex non-linear functions 
and relationships between input functions and output observables [7–19]. Recently several techniques 
have been implemented that can effectively learn the potential energy surface (PES) of a complex 
collection of atoms, which, in turn, describes their structural and dynamical properties. These ML 
methods trained on ab initio calculations have been shown to have ab initio accuracy and are comparable 
to empirical FFs in cost. The two primary techniques for learning arbitrary PES are Gaussian Process 
methods and Artificial Neural Networks. The former method, pioneered by Csanyi et al. [19, 20], 
involves the use of non-parametric Gaussian Kernels centred on training data, primarily energies of 
atomic configurations and atomic forces. These Gaussian Approximation Potentials (GAP) have been 
demonstrated to be highly accurate for a wide range of mono- and diatomic systems but possess a 
computational complexity of O(n3), which restricts their speed and applicability. In contrast, the Neural 
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Network approach for approximating PES, proposed by Parrinello et al. [21, 22], uses multi-layer neural 
networks and non-linear activation functions to learn the dependence of the PES on the (featurized) 
atomic coordinates. These networks are commonly trained on system energies, with interatomic forces 
being obtained as gradients with respect to the feature-vector during back-propagation. The speed of 
force prediction in these models is limited by the relatively slow gradient computation process. To 
overcome this limitation, we have constructed a deep neural network model trained exclusively on 
interatomic forces, using feature vectors qualitatively similar to those of Behler et al [22]. The primary 
advantage of this model is the use of forward propagation during force prediction, which significantly 
improves prediction speed. Figure 4 (a) shows the schematic of a 3-layer neural network model for force 
prediction for a system of crystalline aluminium along with the 2-body radial feature vector. Figures 
4(b) and 4(c) highlight the quality of the trained forcefield and demonstrate the predicted forces are 
consistent, both in magnitude and direction, with quantum-mechanical forces for the Al system.  

 

Figure 4. (a) Radial 
feature vector and 
schematic of the 
neural network used 
for computing force 
in the Al model 
system. (b) NN-
predicted forces 
compared with DFT  
ground truth values 
for a test set shows a 
well-trained model 
with relatively  
 

4. Conclusion 
MAGICS Center has performed several multi-million-atom ReaxFF-RMD simulations on 
computational synthesis of MoS2 monolayers from MoO3 precursors to identify atomic-scale 
mechanisms and reaction pathways for guided design of synthesis conditions. Our RMD simulations 
show a strong dependence of 2H, 1T and defective structures as well as grain nucleation and growth on 
multiple heating/cooling cycles on the CVD growth may play an important role in synthesis of high-
quality MoS2 layers. The analysis of local atomic structures to identify crystalline and defective phases 
is highly non-trivial. We constructed a three-layer, feed-forward neural network (NN) model to analyze 
different structures generated during MD simulation. The NN model classifies each atom in one of the 
six phases which are either as transition metal or chalcogen atoms in 2H phase, 1T phase and defects. t-
SNE analyses of learned representation of these phases in the hidden layers of the NN model show that 
separation of all phases becomes clearer in the third layer. Machine Learning can be used to learn highly 
complex relationships including those between local atomic configurations and energies and forces.  

References 
[1] Nomura K-i, Kalia R K, Nakano A and Vashishta P 2008 A scalable parallel algorithm for large-

scale reactive force-field molecular dynamics simulations Computer Physics Communications 
178 73-87 

[2] Li Y, Nomura K, Insley J, Morozov V, Kumaran K, Romero N, W. Goddard I, Kalia R, Nakano 
A and Vashishta P 2018 Scalable Reactive Molecular Dynamics Simulations for Computational 
Synthesis Computing in Science & Engineering  1- 



METANANO 2019
IOP Conf. Series: Journal of Physics: Conf. Series 1461 (2020) 012182

IOP Publishing
doi:10.1088/1742-6596/1461/1/012182

5

 
 
 
 
 
 

[3] Nomura K, Small P E, Kalia R K, Nakano A and Vashishta P 2015 An extended-Lagrangian 
scheme for charge equilibration in reactive molecular dynamics simulations Computer Physics 
Communications 192 91-6 

[4] van Duin A C T, Dasgupta S, Lorant F and A G W 2001 ReaxFF: A Reactive Force Field for 
Hydrocarbonds Journal of Physical Chemistry A 105 9396-409 

[5] Mo Y, Turner K T and Szlufarska I 2009 Friction laws at the nanoscale Nature 457 1116-9 
[6] Mueller J E, van Duin A C T and Goddard W A 2010 Development and Validation of ReaxFF 

Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel Journal of Physical 
Chemistry C 114 4939-49 

[7] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang 
C S and Li L J 2012 Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor 
Deposition Adv. Mater. 24 2320-5 

[8] Lembke D and Kis A 2012 Breakdown of high-performance monolayer MoS2 transistors ACS 
Nano 6 10070-5 

[9] Ganatra R and Zhang Q 2014 Few-layer MoS2: a promising layered semiconductor ACS Nano 
8 4074-99 

[10] Venkata Subbaiah Y, Saji K and Tiwari A 2016 Atomically Thin MoS2: A Versatile 
Nongraphene 2D Material Adv. Funct. Mater. 26 2046-69 

[11] Gupta A, Sakthivel T and Seal S 2015 Recent development in 2D materials beyond graphene 
Prog. Mater Sci. 73 44-126 

[12] Lv Z, Mahmood N, Tahir M, Pan L, Zhang X and Zou J-J 2016 Fabrication of zero to three 
dimensional nanostructured molybdenum sulfides and their electrochemical and photocatalytic 
applications Nanoscale 8 18250-69 

[13] Yu J, Li J, Zhang W and Chang H 2015 Synthesis of high quality two-dimensional materials 
via chemical vapor deposition Chem. Sci. 6 6705-16 

[14] Zhan Y, Liu Z, Najmaei S, Ajayan P M and Lou J 2012 Large‐area vapor‐phase growth and 
characterization of MoS2 atomic layers on a SiO2 substrate Small 8 966-71 

[15] van Duin A C T, Dasgupta S, Lorant F and Goddard W A 2001 ReaxFF: a reactive force field 
for hydrocarbons J. Phys. Chem. A 105 9396-409 

[16] Hong S, Krishnamoorthy A, Rajak P, Tiwari S C, Misawa M, Shimojo F, Kalia R K, Nakano A 
and Vashishta P 2017 Computational Synthesis of MoS2 Layers by Reactive Molecular 
Dynamics Simulations: Initial Sulfidation of MoO3 Surfaces Nano Lett. 17 4866–72 

[17] Hong S, Sheng C, Krishnamoorthy A, Rajak P, Tiwari S C, Nomura K-i, Misawa M, Shimojo 
F, Kalia R K and Nakano A 2018 Chemical Vapor Deposition Synthesis of MoS2 Layers from 
the Direct Sulfidation of MoO3 Surfaces Using Reactive Molecular Dynamics Simulations The 
Journal of Physical Chemistry C 122 7494-503 

[18] Apte A, Kochat V, Rajak P, Krishnamoorthy A, Manimunda P, Hachtel J A, Idrobo J C, 
Amanulla S A S, Vashishta P, Nakano A, Kalia R K, Tiwary C S and Ajayan P M 2018 
Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy Acs Nano 12 3468-76 

[19] Bartok A P, Payne M C, Kondor R and Csanyi G 2010 Gaussian Approximation Potentials: The 
Accuracy of Quantum Mechanics, without the Electrons Physical Review Letters 104 136403 

[20] Mocanu F C, Konstantinou K, Lee T H, Bernstein N, Deringer V L, Csanyi G and Elliott S R 
2018 Modeling the Phase-Change Memory Material, Ge2Sb2Te5, with a Machine-Learned 
Interatomic Potential J Phys Chem B 122 8998-9006 

[21] Behler J 2017 First Principles Neural Network Potentials for Reactive Simulations of Large 
Molecular and Condensed Systems Angew Chem Int Edit 56 12828-40 

[22] Behler J and Parrinello M 2007 Generalized neural-network representation of high-dimensional 
potential-energy surfaces Physical Review Letters 98 

 
Acknowledgments 
This work supported as part of the Computational Materials Sciences Program, U.S. Department of 
Energy, Basic Energy Sciences, Award DE-SC0014607.  


