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Abstract—Neural network molecular dynamics (NNMD)
simulations could revolutionize atomistic modeling of materials
with quantum-mechanical accuracy at a fraction of
computational cost. However, popular NNMD frameworks are
generally implemented for a single computing node, and
conventional energy-based NN models still suffer from large
time-to-solution (T2S), prohibiting the application of NNMD to
challenging materials simulations encompassing large
spatiotemporal scales. Consequently, no leadership-scale
NNMD simulation has thus far been reported. Here, we present
a scalable parallel NNMD software (RXMD-NN) based on our
scalable reactive molecular dynamics simulation engine named
RXMD. RXMD-NN has achieved high scalability up to 786,432
IBM BlueGene/Q cores involving 1.7 billion atoms.
Furthermore, we have achieved 4.6-fold reduction of T2S by
using a novel network that directly predicts atomic forces from
feature vectors. Reduced T2S has for the first time allowed the
study of large-scale off-stoichiometry effect in a widely used
phase change material, Ge;Se;Tes, thereby resolving its “first-
sharp diffraction peak mystery”.

Keywords—neural network, molecular dynamics, parallel
computing, phase change materials, fist sharp diffraction peak,
off-stoichiometry

I. INTRODUCTION

Molecular dynamics (MD) simulations follow the
trajectories of all atoms to study material properties. For
accurate description of materials, quantum MD (QMD)
simulations compute interatomic forces quantum
mechanically from first principles. The last decade has
witnessed a surge of neural network MD (NMD) simulations,
in which an artificial neural network (ANN) model is trained
to reproduce the potential energy of QMD simulations [1-4].
Interatomic forces are then obtained by differentiating the
energy with respect to atomic positions.

While NNMD substantially reduces the time-to-solution
(T2S) while retaining the accuracy of QMD, it is still not fast

enough to encompass necessary spatiotemporal scales to
study many important material properties. This is primarily
because most NNMD simulations use popular NNMD
software packages such as the Atomic Energy Network
(aenet) [5], which performs NNMD only on a single
computing node using an external Python framework. A
scalable parallel implementation of NNMD is urgently
needed to perform large NNMD simulations on leadership-
scale computers. The most widely used NNMD is based on
an energy model where local atomic environment is encoded
into a feature vector to train a neural network that predicts the
potential energy of the system. With the energy model,
atomic forces are obtained from analytical derivative of the
neural network, which incurs an expensive force-evaluation
step in every MD step. Another popular approach to machine-
learning MD is Gaussian Approximation Potential (GAP) [6],
where the potential energy surface is fitted against QMD
dataset using Gaussian Process (GP). To predict atomic
forces, however, the GP framework involves matrix
inversion that scales O(N?) with respect to the number of
training examples, therefore it is not suitable for large-scale
MD simulations.

II. METHOD INNOVATION

T2S-reducing force model: We have developed a direct
force model employing a multi-layer perceptron model for
NNMD simulations. An efficient feature vector design is
essential to achieve accurate atomic-force prediction as well
as fast evaluation of the feature vector during MD simulation.
Based on the symmetric function proposed by Behler and
Parrinello [7], we have designed a new feature vector
incorporating (i) directional information of an atomic pair in
the radial feature G, (ri j) and (ii) bond vibrational modes

(stretching G34(7;j,) and bending G2 (7)) for an atomic
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triplet in the angular feature Gg’i(rijk). These physically-
based features are defined as
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Here, 7;; is the interatomic distance between i-th and j-th
atoms, 17, 4 and A, are parameters of the modified symmetric
function, 7, is the cutoff distance, and o is the atomic
coordinates in the x, y or z direction. We use one neural
network to predict each of the atomic force components, Fx,
Fy and F,. This direct force prediction model eliminates the
expensive evaluation of energy derivatives at every MD step
as well as provides further parallelization opportunity by
using one network for each force element. Fig. 1
schematically shows the force model, in which the
physically-based feature functions are computed from local
atomic environment, then subsequently are fed to the neural
network to directly predict atomic force values. The ground
truth and the predicted force values show an excellent
agreement for Ge, Sb, and Te atoms in the x, y, and z
directions respectively (Fig. 2).

Scalable parallel implementation: We have implemented
the new NNMD force model in a linear-scaling parallel
reactive MD software named RXMD [8]. RXMD was

{GZ,(ri1)}
{63, (i)}

Fig. 1. Schematic of the neural-network force model. The physically-based
symmetric functions, Ggl, (ri j) and Ggi (ri jk), are computed from neighboring
atomic coordinates. Neural network directly predicts atomic force Fo.
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Fig. 2: Ground truth versus predicted force values of Ge, Sb, and Te
atoms. Force components in the x, y, and z directions are labeled as Fy,
Fy, and F,, respectively.
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originally developed for reactive MD simulations that scale
from  desktop  computers to  massively-parallel
supercomputing platforms. To improve its parallel efficiency
and T2S, a number of optimization techniques are used in
RXMD, including a hybrid cell/neighbor list-based domain
decomposition scheme to realize linear scaling for general n-
tuple computations [9], an efficient six-way interprocess
communication using Message Passing Interface (MPI)
library, single-node performance improvement by Open
Multi-Processing (OpenMP) multithreading and  Shift-
Collapse (SC) algorithm for provably minimum computation
[10]. Though the number of combinations of parameters in
the symmetry function is huge, its computational pattern is
almost identical to the so called two-body and three-body
interactions in MD, and thus these optimization techniques
are readily applicable to the NNMD algorithm considered
here. We also employ a mixed-precision approach that uses
single precision for the symmetric function and force
evaluation to reduce the amount of data transfer.

III. PERFORMANCE MEASUREMENTS

The performance of RXMD-NN has been tested on a
GezSbaTes (GST) dataset using up to full-machine Mira at
Argonne Leadership Computing Facility (ALCF). The Mira
system consists of 48 computing racks, each of which has
1,024 nodes, providing 786,432 BlueGene/Q cores in total.

We first perform a weak-scaling test, in which the
number of atoms per core N/P is kept constant. We measure
the wall-clock time per simulation time step with scaled
workloads — 25,920-atom GST system on each core (Fig. 3).
By increasing the number of atoms linearly with the number
of cores, the wall-clock time remains almost constant,
indicating excellent scalability. To quantify the parallel
efficiency, we first define the speed of the RXMD-NN code
as a product of the total number of atoms and the number of
NNMD time steps executed per second. The isogranular (or
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Fig. 3: Weak-scaling performance of the NNMD algorithm. Wall-clock
time per MD step as a function of the number of BlueGene/Q cores up to
65,536. The number of GST atoms per MPI rank is kept constant as 25,920
that amounts to 1,698,693,120 GST atoms in total. Blue circle shows wall-
clock time in second per MD step while black dashed line shows the
theoretical peak performance.

weak-scaling) speedup is given by the ratio between the
speed of P core and that of 1,024 cores as a reference system.
With the granularity of 25,920 atoms per core, the parallel
efficiency is 0.99 on 65,536 cores for a 1,698,693,120-atom
system, shown in Fig. 3. This demonstrates a very high
scalability of the RXMD-NN code.

We next perform a strong-scaling test by simulating GST
with a total of 318,504,960 atoms. In this test, the number of
cores ranges from P = 12,288 to 786,432, while keeping the
total problem size constant. We measure the wall-clock time
per NNMD time step as a function of P cores. The runtime is
reduced by a factor of 55 on 786,432 cores compared with
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Fig. 4: Strong-scaling performance of the NNMD algorithm. The total
problem size is kept constant as 318,504,960 GST atoms. Blue-line shows
the obtained wall-clock time per MD step in seconds up to 786,432
BlueGene/Q cores, while black-dotted line shows the theoretical peak speed
up using the smallest size benchmark on 12,288 BlueGene/Q cores as the
reference.
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the 12,288 cores run (i.e., using 64-times larger number of
cores); see Fig. 4. This signifies a strong-scaling speedup of
55, with the corresponding strong-scaling parallel efficiency
of 0.861. It is more difficult to achieve high strong-scaling
parallel efficiency compared with weak-scaling parallel
efficiency, as the comparison of Figs. 3 and 4 suggests. This
is due to the surge of communication/computation ratio as the
workload per rank shrinks proportionally. With 64 times
smaller system size of the weak-scaling test, the observed
strong-scaling parallel efficiency is considered excellent.

IV. APPLICATIONS

Thanks to the excellent scalability of the RXMD-NN
code and reduced T2S by 4.6x compared to the standard
energy model, we were able to address a challenging problem
of medium-range structural order in off-stoichiometric GST
for the first time. Phase change materials (PCM) are
attracting great attention because of its novel engineering
applications such as neuromorphic computing, photonics
devices and scalable data storages [11-13]. GST 1is an
archetypal PCM that shows fast switching behavior between
high contrast amorphous and crystalline phases.
Chalcogenide PCMs, such as GeTe and GST, exhibit
reversible fast switching between crystal and amorphous
phase by Joule heating. Around the phase transition
temperature, GST shows orders-of-magnitude change in the
electrical conductivity and the optical reflectivity, which has
been used in optical rewritable media, and recently non-
volatile memory devices. It is known that the performance of
GST can be altered by their stoichiometry, however,
investigating the non-stoichiometry effect poses a great
challenge for QMD because their high computational cost
prohibits from scaling the simulation system sufficiently
large to describe a minute difference in the ratio of
constituent atoms.

First sharp diffraction peak (FSDP) in neutron scattering
experiment indicates the presence of medium-range
structural order in amorphous materials with a network of
randomly-distributed atoms. Although FSDP is an extremely
useful indicator to characterize complex material phases, a
large number of atoms, typically tens of thousands of atoms
[14], is required to capture this salient feature using atomistic
simulations even in stoichiometric systems. Investigating the
non-stoichiometry effect on FSDP is expected to require even
greater number of atomic configuration samples, therefore,
this problem remains elusive because of the lack of a scalable
simulation method for GST. While neutron scattering
experiments indicate the existence of a clear FSDP peak, no
MD simulation has thus far reproduced the feature.

We have applied the direct force model to investigate how
the stoichiometry affects in GST to resolve this controversy.
The initial configuration is created by QMD using NVT
ensemble at 600 K and replicated by 8X8X8 times in the x, y,
and z direction. The obtained system dimensions are
87.830x84.514x103.685 (A%). From the original Ge>SbaTes
system with normal stoichiometry, we randomly remove
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tellurium atoms to create two Te-deficient systems, namely
GeaSbaTesa7s and GeaSbaTesss. Table 1 summarizes the
number of atoms per atom type in the three GST systems. We
performed a series of melt-quench simulations using NNMD
to create amorphous configuration. We have compared pair
distribution function and bond-angle distribution to verify the
obtained atomic configurations against QMD, and found the
configurations generated by QMD and NNMD show
excellent agreement.

TABLE 1. NUMBER OF ATOMS IN THE THREE GST SYSTEMS

System Ge Sb Te
GexSbaTes | 5,760 | 5,760 | 14,400
GeaSbaTesss | 5,760 | 5,760 | 13,696
GexSbaTesqs | 5,760 | 5,760 | 12,800

— Ge,Sb,Te,
——Ge,Sb,Te, ,, T

° Experiment

4 6 8

a(A")
Fig. 5: (a) Snapshot of amorphous GST configuration generated by
NNMD. Atoms are color-coded as red for Sb, yellow for Ge, and blue for
Te, respectively (b) Neutron scattering structure factors S, (q) of GST
systems with different stoichiometries, Ge:SbaTes, GeaSbaTea.s,
GezSbaTes s, and experiment. The inset shows a zoom-up view of S,,(q)
around small ¢ value.
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Fig. 5 shows the neutron scattering structure factors
Sn(q) of the three GST systems, Ge2SbaTes, Ge2SbaTes 76
and Ge2SbaTeas 44, along with an experimental result [15]. The
inset of Fig.5(b) provides a close-up view of S,,(q) around
small ¢ value signifying FSDP. The NNMD simulation
shows that the reduction in the tellurium composition results
in the increase of the peak height around ¢ = 1.1(A™), i.e.
FSDP. Also, the peak position agrees well with the neutron
scattering experiment, thereby resolving the FSDP mystery.

CONCLUSION

In this paper, we have presented a highly-efficient
scalable NNMD algorithm to investigate phase change
materials and its off-stoichiometry effect. Our neural network
model directly predicts atomic forces based on physically-
based features, which eliminates the expensive force
evaluation step in the energy model. Taking advantage of a
parallel MD engine that is highly-optimized for T2S, we have
achieved nearly perfect parallel efficiency and 86% strong
scaling efficiency using 786,432 BlueGene/Q cores of ALCF
Mira. Our simulation shows a pronounced FSDP in the Te-
deficient system, which indicates an increased medium-range
structural ordering with deficient Te atoms.
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